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Abstract
Objectives: Addressing the challenge of cost-effective asthma diagnosis amidst diverse symptom
patterns among patients, this study aims to develop a machine learning-based asthma prediction tool
for self-detection of asthma. Methods: Data from 6,665 participants in the Sri Lanka Health and
Ageing Study (2018-2019) are used for this research. Thirteen machine learning algorithms, in-
cluding Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, Naı̈ve Bayes,
K-Nearest Neighbors, Gradient Boost, XGBoost, AdaBoost, CatBoost, LightGBM, Multi-Layer
Perceptron, and Probabilistic Neural Network, are employed. Results: A hybrid version of Logistic
Regression and LightGBM outperformed other models, achieving an AUC of 0.9062 and 79.85%
sensitivity. Key predictive features for asthma include wheezing, breathlessness with wheezing,
shortness of breath attacks, coughing attacks, chest tightness, nasal allergies, physical activity,
passive smoking, ethnicity, and residential sector. Conclusion: Combining Logistic Regression and
LightGBM models can effectively predict adult asthma based on self-reported symptoms and
demographic and behavioural characteristics. The proposed expert system assists clinicians and
patients in diagnosing potential asthma cases.

Corresponding author:
J R N A Gunawardana, Institute for Health Policy, 72, Park Street, Colombo 02, Western Province, Sri Lanka.
Email: nishaniamalka@gmail.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the
Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-
nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further

permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.
com/en-us/nam/open-access-at-sage).

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/14604582241283968
https://journals.sagepub.com/home/jhi
https://orcid.org/0000-0002-5641-9332
https://orcid.org/0000-0002-5013-2816
mailto:nishaniamalka@gmail.com
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F14604582241283968&domain=pdf&date_stamp=2024-09-11


Keywords
asthma, classification, disease prediction, machine learning, LightGBM, logistic regression

Introduction

Asthma is a chronic, non-communicable disease characterized by inflammation and narrowing of
the bronchial tubes, resulting in reduced airflow in and out of the lungs.1 It affected approximately
260 million individuals worldwide in 2019, and it was the 34th leading cause of disease burden,
measured by Disability-Adjusted Life Years (DALYs).2

Asthma can be relieved and controlled by avoiding triggers and lifestyle changes, and it can be
effectively controlled with medication. Control requires diagnosis and continuing management with
medication, both of which are best done at the primary care level.3 Whilst the burden of disease from
asthma is mainly through its symptoms, it can be fatal if poorly controlled. When asthma is poorly
controlled, people may require admission and the risk of mortality increases substantially. For this
reason, asthma hospitalizations and deaths are often regarded as “avoidable”, and admission and
mortality rates for asthma have been used as indicators of primary care quality.4,5

Sri Lanka is a low-middle income developing country, which the evidence indicates suffers from
a high burden of asthma. Asthma was the fourth leading cause of death in Sri Lanka in
2019 according to global estimates.6 Although national estimates are not available for Sri Lanka, a
study covering 7 out of 9 provinces found that wheezing (an indicator of asthma) was reported by
24% of adults, 80% of whom had at least one other symptom of asthma.7 However, only 12%
reported a diagnosis of asthma, indicating low levels of diagnosis.7 The conclusion of low levels of
diagnosis and inadequate treatment is reinforced by Sri Lanka’s very high asthma hospital ad-
mission rates of 895 per 100,000 population,8 fifteen times more than the average rate in Orga-
nization for Economic Co-operation and Development (OECD) countries.9 Additionally, Sri Lanka
had one of the highest reported asthma mortality rates in the world (1.3 deaths per 100,000), nearly
two to five times the mortality rates reported in Europe and high-income countries.10 Death rates
were also higher in poorer socioeconomic quintiles and highest in estate areas of the central hill
country,10 suggesting that disparities in access to healthcare may be contributing.

Clinical diagnosis of asthma requires spirometry with testing of bronchodilator reversibility in a
healthcare setting. There is limited capacity for this in the Sri Lankan healthcare system, even at the
hospital level, and limited availability of equipment and supplies often results in spirometry testing
not being done in patients with possible asthma.11 Having lower-cost non-clinical options to identify
people with a high risk of having asthma could improve diagnosis and treatment rates by prioritizing
those at higher risk for clinical testing, and by increasing treatment rates to reduce morbidity and
mortality.

One option for improving screening at the community level might be to provide the public with
access to reliable screeners that they can self-use to identify if they might have asthma and should
seek proper assessment by a physician. This would require a screening tool adapted to the Sri
Lankan population that uses non-clinical information to identify individuals with a high likelihood
of having asthma.

One approach to doing this is to use self-reported data along with Machine Learning (ML) and
Artificial Intelligence (AI) to streamline the process of identifying individuals who may require
further diagnostic assessments or treatment for asthma. By integrating AI algorithms, which analyze
patient-reported symptoms and triggers such as coughing or wheezing, with ML models that le-
verage both current data and historical records, it becomes possible to predict the presence or
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exacerbation of asthma with a personalized risk assessment.12–15 These AI-driven decision support
systems can assist healthcare providers in interpreting patient-reported symptoms and character-
istics, potentially accelerating the diagnosis and treatment process.13

Moreover, a model that is developed using self-reported data could be used by individuals, or
clinicians at primary or secondary care settings, particularly in countries without the resources for
expensive laboratory tests. For a more comprehensive exploration of howML and AI can be applied
in this context, please refer to the “Related Work” section. Thus, we aimed to develop a predictive
model incorporating adult asthma features and risk factors which can be deployed as a web
application.

Related Work

Many existing clinical prediction models for asthma are designed for use within healthcare settings
and require data that is typically only available through medical facilities. These models often
involve clinical populations and use detailed clinical data, which is not always accessible to the
general public, particularly in resource-limited settings like Sri Lanka. In contrast, the goal in the Sri
Lankan context is to develop a self-use screener that can be utilized by ordinary people outside of
healthcare facilities. This aligns with the need for accessible, population-based solutions that le-
verage available data to facilitate early detection and prompt medical consultation.

Tomita and colleagues16 developed a model using Logistic Regression, Support Vector Machine
(SVM), and Deep Neural Network (DNN) to predict adult asthma diagnoses. Their study used
clinical features such as symptoms, physical signs, biochemical findings, lung function tests, and
bronchial challenge test results from 566 adult outpatients at Kinki University Hospital, achieving a
DNN model accuracy of 98%. Similarly, researchers from Ionian University, Greece, developed an
asthma predictive model17 using demographic, medical, and lung measurements, habits, and
symptoms data from 132 patients, finding that Random Forest outperformed other models like
Naı̈ve Bayes, Logistic Regression, and SVM. These studies highlight the effectiveness of ML
models but underscore the need for clinical data, which limits their applicability in non-clinical
settings.

Philippine researchers integrated ML models to predict asthma using genetic information,18

specifically Single-Nucleotide Polymorphism (SNP) data. They used Random Forest and Recursive
Feature Elimination (RFE) algorithms to identify significant SNPs, with the integrated RF-SVM
model achieving an accuracy of 62.5%. Priya and Priyadharshini19 developed a Convolutional
Neural Network (CNN) model that used a broad range of clinical features to achieve 98.36%
accuracy. In another study, Chinese computer scientists20 used classifiers such as Naı̈ve Bayes and
Random Forest on a dataset from a hospital in Pakistan, with Naı̈ve Bayes attaining an accuracy of
98.75%. Additionally, a collaboration between South Korean and US researchers implemented a
mobile health application using the Internet of Things (IoT).21 They developed a CNN model using
Peak Expiratory Flow Rates (PEFR), indoor particulate matter data, and weather data. This model,
implemented as a mobile app on smartphones, demonstrated lower error rates compared to other
benchmark techniques. These models, though highly accurate, rely on detailed clinical and
genetic data.

In contrast, our approach focuses on developing a population-based asthma screener that can be
used by individuals to self-assess their need for medical consultation. This approach leverages
readily available data, making it more accessible and practical for use outside healthcare facilities.
For instance, the National Health and Nutrition Examination Surveys (NHANES) data was used to
predict asthma attacks in a cross-sectional United States (US) population, achieving an accuracy of
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73.7% with an XGBoost model.22 Additionally, a study combined ML with AI,23 using data from
social media and doctor visits to create a Decision Tree model with 87% accuracy, deployed as an
Android app for user self-assessment.

Several real-world applications have successfully implemented ML and AI to assist with asthma
management, highlighting the potential for self-use tools. For example, Smart Asthma: Forecast
Asthma uses historical and real-time data to provide personalized forecasts and insights into
potential triggers, enabling users to take preventive measures.24,25 Similarly, Propeller Health uses
sensors attached to inhalers to track medication use and environmental data, providing users with
health forecasts based on local conditions and reducing emergency visits by 57%.26–28 Hailie29 and
KagenAir30 also offer personalized insights and forecasts to help users manage their asthma based
on real-time data and usage patterns.

Most of the previously published approaches rely on data input by physicians and information
from laboratory investigations and testing procedures. In Sri Lanka, where the priority is to triage
people for clinical assessment, there is an urgent need for alternative tools that can be used by the
public at the community level using information readily available to individuals. In Sri Lanka,
where medical testing resources are limited, the widespread access to mobile phones with internet
connectivity31–33 provides an opportunity to develop a relevant technology solution. A public-
facing web tool based on a population-based screener can help individuals self-assess their asthma
risk and determine the need for medical consultation. This approach leverages accessible data and
technology, making it a practical and scalable solution for early detection and management of
asthma in Sri Lanka.

AI-based systems have been successfully used to screen for undiagnosed conditions in other
health areas. For example, Singapore’s AI system SELENA + addresses diabetic retinopathy by
analyzing retinal images for early signs of eye diseases, significantly scaling up screening capa-
bilities.34 Singapore’s healthcare system also uses AI for early detection, treatment targeting, and
resource optimization, demonstrating the broad potential of AI in improving healthcare delivery and
efficiency.34 These examples illustrate the feasibility and benefits of implementing AI-based
screening tools in various health contexts, and such tools could likely be useful for asthma de-
tection in resource-limited settings like Sri Lanka.

Methodology

Overall framework

The study followed a framework of six phases:

· Phase 1: Data extraction
· Phase 2: Data preprocessing and exploratory data analysis
· Phase 3: Feature engineering
· Phase 4: Model fitting
· Phase 5: Model evaluation
· Phase 6: Model deployment

Figure 1 provides a visual representation of the comprehensive data analysis workflow executed
within each of these phases.
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Study design and participants

We utilized data from the inaugural wave of the Sri Lanka Health and Ageing Study (SLHAS), a
nationally representative longitudinal cohort study, conducted between mid-November 2018 and
mid-November 2019.

The SLHAS employed a stratified, multistage probability sampling strategy to procure a rep-
resentative sample of the non-institutionalized adult population (≥18 years) across Sri Lanka.35,36

This methodological framework treated all 14,014 Grama Niladhari Divisions (GNDs), the smallest
administrative units in Sri Lanka, as primary sampling units (PSUs).35,36 These divisions were
stratified according to district, residential sector, and Area Socio-Economic Status (ASES), with the
latter quantified through Principal Component Analysis (PCA) of socio-economic indicators de-
rived from the 2012 national census data furnished by the Department of Census and Statistics
(DCS).35,36

To achieve a robust sample, two or more PSUs were selected from each stratum via probability-
proportionate-to-size sampling. Within each PSU, households were systematically sampled, and
one eligible adult meeting inclusion criteria: resident, aged ≥18 years, not pregnant, and able to
provide informed consent; was randomly selected, with age weighting applied to ensure demo-
graphic representativeness. Households were excluded if the individual selected could not
participate.35,36

Fieldwork was rotated across provinces to mitigate seasonal bias. Participants attended local field
clinics, where they underwent comprehensive interviews to gather data on chronic diseases and
symptoms, risk factors, and socio-economic variables. Each participant also underwent anthro-
pometric measurements and blood tests. For participants with mobility limitations, interviews and
abbreviated assessments were conducted in their homes. Data was collected using a Computer-
Assisted Personal Interviewing (CAPI) application deployed on tablet devices.35,36

Figure 1. Overall framework.
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Of the 10,689 households sampled, 10,062 agreed to participate. Among these, 6,624 adults
attended field clinics, with an additional 41 individuals completing home interviews, yielding an
effective response rate of 65.0%. Response rates varied, with higher participation observed among
women (69%), adults aged ≥45 years (74%), rural residents (70%), and individuals with known
diabetic conditions (73%).35,36

Data collection

The SLHAS extensively leveraged electronic data capture methods, prominently featuring CAPI for
streamlined data acquisition. The integration of CAPI offered several advantages:

· Accelerated and enhanced precision in data acquisition within field settings compared to
traditional methods.

· Mitigation of costs and errors associated with manual data entry from paper-based forms,
including the need for subsequent data cleaning.

· Facilitation of intricate data collection designs, including randomized questionnaire modules,
Global Positioning System (GPS) data recording, and coding of complex responses.

· Drastically reduced turnaround time from data acquisition to data availability for analysis.
· Agile adaptation of data collection tools in response to survey experience or project

adjustments.

To facilitate electronic data capture, the SLHAS utilized iFormBuilder, a cloud-based mobile
data collection platform provided by Zerion Software.37 Customized data collection forms were
employed, enabling data entry through typing, point-and-click methods, barcode scanning, and GPS
signal capture via tablet PCs (Personal Computers). Furthermore, the iForm collection tools in-
corporated data validation checks to minimize erroneous entries, while the question design
minimized reliance on free-text responses. More importantly, all Personally Identifiable Information
(PII) was safeguarded through Public-Key Cryptography (PKC), ensuring robust data security and
patient privacy.

Questionnaire tools

All the questionnaires used in this study are validated, translated, back-translated, and pilot-tested in
the field prior to the actual commencement of the survey. Questions from standard international
questionnaires were used. The European Community Respiratory Health Survey (ECRHS) II38 was
used to determine respiratory symptoms. The World Health Organization’s (WHO) STEPwise
approach to noncommunicable disease risk factor surveillance (STEPS)39,40 was used to determine
alcohol usage and physical activity, while questions from the National Health and Nutrition Ex-
amination Survey (NHANES) 201541,42 was used to determine smoking habits.

Household features such as garbage disposal and cooking were determined using questions from
the Sri Lankan Household Income & Expenditure Survey (HIES) 201643 and Demographic &
Health Survey (DHS) 2016,44,45 while demographic details were based on questions from the Sri
Lankan Census of Population & Housing (CPH) 2011.46,47 These tools and questionnaires are
available for public use, such as those from NHANES, HIES, DHS, and CPH, whilst the others are
available for use with appropriate citation.
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Variables considered for models

We followed an evidence-based reasoning approach through literature for the initial selection of
input features. A detailed description of the variables used in this study is given in Table 1 below.

Preprocessing

Initial SLHAS datasets in Stata format were retrieved and then cleansed and explored graphically.
Feature engineering techniques were applied, including binning, outlier detection, one-hot en-
coding, and imputation of missing data. We imputed missing data columns using the Multivariate
Imputation by Chained Equations (MICE) algorithm when the missing data percentage was less
than 40%.52

Two variables are said to be highly correlated if the magnitude of the correlation coefficient is
higher than 0.7.53 Some ML models are sensitive to multicollinearity. Therefore, correlation co-
efficient calculation techniques like Cramer’s V (for categorical features), Pearson’s r (for numerical
features), and correlation ratio (for mixed data) were employed to detect multicollinearity.

In our study, we employed three different dimension reduction techniques to handle correlated
features for our ML models. We utilized Principal Component Analysis (PCA) for numerical
features, Multiple Correspondence Analysis (MCA) for categorical features, and Factor Analysis of
Mixed Data (FAMD) for mixed data. These techniques were chosen to address multicollinearity
assumptions in our models by combining correlated features.

Data sampling

The model-building process of this study started with an 80% versus 20% train-test split with
stratification. In tuning model hyperparameters, we adopted the grid search method with 10-fold
cross-validation. Moreover, the 10-fold cross-validation technique allowed for RFE and perfor-
mance score calculations.

Due to the unequal distribution between asthmatics and non-asthmatics in the dataset (known as
the imbalance property), we used two categories of ML models: models built on an under-sampled
dataset (mentioned as data level approach models in Table 3) and models that incorporated class
weights to overcome the imbalance in the dataset, referred to as balanced models (also mentioned as
algorithmic level approach models in Table 3).

Machine learning models

Logistic regression. Logistic Regression (Univariate Logistic Regression) is a statistical model that
models the relationship between a dichotomous outcome variable and one or more categorical or
continuous response variables, resulting in an equation to predict the outcome.54

Support vector machine. Support Vector Machine (SVM) finds an optimal hyperplane in the di-
mensional space which separates observations belonging to one class (group) from another.55 SVMs
can handle both linear and nonlinear classifications.

Decision tree. ADecision Tree follows the divide-and-conquer approach to perform classification.56

It recursively partitions the dataset using information gain metrics until each partition consists
totally or mainly of cases from only a single class.57
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Table 1. Overview of variables.

Category Variable Detailed description

Outcome asthma_status Presence of asthma based on respondent self-
report, doctor diagnosis, or the use of prescribed
asthma medications

Respiratory
symptoms48,49

wheez The respondent experienced wheezing or whistling
sounds in the chest at any time in the past year

brthless_wheez The respondent experienced breathlessness while
wheezing occurred

wheez_cold The respondent experienced wheezing or whistling
sounds even in the absence of a cold

awaken_chest_tightness The respondent woke up with a feeling of tightness
in the chest at any point during the past year

dyspnea_rest The respondent had an attack of shortness of breath
(SOB) while at rest during the day at least once in
the past year

dyspnea_strenuous_act The respondent had an attack of SOB following
strenuous activity at any time in the past year

awaken_dyspnea_1yr The respondent was awakened by an attack of SOB
at any time in the past year

awaken_dyspnea_3month The respondent was awakened by an attack of SOB
in the last 3 months

avg_dyspnea_attk_1wk_3months The respondent experienced attacks of SOB at least
once a week on average in the last 3 months

avg_dyspnea_attk_3month The average number of times per week the
respondent was awakened by SOB in the last
3 months

awaken_cough The respondent was awakened by an episode of
coughing at any time in the past year

nasal_allergy The respondent has experienced nasal allergies,
including hay fever

Behavioural risk
factors

smoker The respondent is currently a smoker of cigarettes,
beedees, hand-rolled cigarettes, shisha, cigars,
pipes, or e-cigarettes containing nicotine, or they
have smoked them in the past

passivesmoke The respondent has been exposed to indirect
smoke at home or workplace in the past 30 days

alcohol The respondent has consumed an alcoholic drink
within the past year

MET_PA The respondent’s total physical activity level,
measured in metabolic equivalent-minutes (MET-
minutes) per week, calculated using the global
physical activity questionnaire (GPAQ) analysis
guide.50

(continued)
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Table 1. (continued)

Category Variable Detailed description

Household features garbage The respondent’s household contributes to air
pollution by burning the garbage they dispose of
(The classification is taken from research
conducted by Subramanian et al51)

light The respondent’s household adds to air pollution by
primarily using kerosene or generators as their
main source of lighting (The classification is taken
from research conducted by Subramanian et al51)

cookfuel The type of cooking fuel used by the respondent’s
household contributes to air pollution,
categorized as high, medium, or low polluting
(The classification is taken from research
conducted by Subramanian et al51)

cookplace The location where the respondent’s household
cooks: Within the house, in a separate building,
or outdoors

Demographic details ageyrs The age (in years) of the respondent at the time of
the survey, calculated using their date of birth

sex The gender of the respondent
ethnicity The ethnic group of the respondent
educat The highest level of education completed by the

respondent
sector The residential sector of the respondent,

categorized as urban, rural, or estate
rec_lat, rec_alt The precise latitude and altitude of the respondent’s

household location, collected using tablet PCs
during household recruitment visits

hhincome Monthly income of the household
rechhsize Number of members who usually live in the

household
Anthropometric
measurements

weight The weight of the respondent, measured using an
OMRON BF511 body composition monitor to
the nearest 0.1 kg.35

height The height of the respondent, measured using a seca
240 cm height measure (seca, Hamburg,
Germany) to the nearest 0.1 cm.35

waist Waist circumference measurement of the
respondent, collected using a seca 200 cm tape
measure at the level of the natural indent of the
trunk during expiration.35

bmi The body mass index (BMI) of the respondent,
calculated as weight (kg) divided by the square of
height (m2) (i.e., weight/height2).35

WHR Waist-to-hip ratio (WHR) of the respondent,
calculated as waist circumference (cm) divided by
hip circumference (cm) (i.e., waist/hip)

WHtR Waist-to-height ratio (WHtR) of the respondent,
calculated as waist circumference (cm) divided by
height (cm) (i.e., waist/height)
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Random forest. Random Forest evolved from Decision Trees and is a combination of multiple
decision trees. Each Decision Tree results in a predicted class, and the Random Forest selects the
most voted class as the final prediction.58

Naı̈ve bayes. The Naı̈ve Bayes algorithm is a supervised learning probabilistic classifier that utilizes
Bayes’ theorem together with feature independence.59

K-nearest neighbour. K-Nearest Neighbour (KNN) employs distance metrics to determine a group of
K-similar samples. Then the class of an unknown case is obtained using the class attributes of the
nearest K neighbour.60

Gradient boost. Gradient Boost is an effective classifier designed to gradually convert a weak learner
to a strong learner by minimizing the loss function. This loss function serves as a metric for
measuring the prediction error. In essence, the objective function guides the gradient descent
optimization process for this systematic reduction in the loss function.61

Extreme gradient boost. The Extreme Gradient Boost (XGBoost) algorithm is an efficient and
flexible form of the Gradient Boost algorithm.62 The XGBoost differs from the Gradient Boost
because it introduces a regularization term to the objective, apart from the loss function.

Adaptive boost. Adaptive Boost (AdaBoost) is a boosting algorithm that converts a weak learner into
a strong one. It does this by adjusting weights with no prior knowledge of the learning ability of the
learner.63

Categorical boosting. Categorical Boosting (CatBoost) is a recently developed Gradient Boost al-
gorithm that uses binary decision trees as the base predictor. It works exceptionally well with
categorical features, resulting in the lowest information loss. Compared to other Gradient Boost
algorithms, CatBoost is diverse due to its utilization of ordered boosting, its ability to be used even
on small datasets, and its automatic handling of categorical features.64

Light gradient boosting machine. Light Gradient Boosting Machine (LightGBM) is another algorithm
that adopts the gradient boosting framework. It is designed to improve computational efficiency and
is thus suitable for large datasets. LightGBM differs from other tree-based models by growing trees
leaf-wise instead of level-wise. This prioritizes nodes with the most significant impact on reducing
loss, leading to faster training times and frequently superior predictive performance, especially with
large datasets. Therefore, LightGBM is a better model when compared to other tree-based models.65

Multi-layer perceptron. Multi-Layer Perceptron (MLP) is a DNN with single or multiple hidden
layers between input and output layers.66 MLPs also have the characteristic of fully connected
layers.

Probabilistic neural network. The Probabilistic Neural Network (PNN) belongs to the ANN group and
is based on Bayes’ theory. It estimates the probability density function of each class. A PNN consists
of four layers: input layer, pattern layer, summary layer, and decision layer.67

Hybrid machine learning model. A Hybrid model combines two or more different ML modeling
techniques to create a single, more powerful model.68
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Model building

We applied multiple ML classifiers identified in the literature to identify the most appropriate model
for asthma prediction. The models we selected were Logistic Regression, SVM, Decision Tree,
Random Forest, Naı̈ve Bayes, KNN, Gradient Boost, XGBoost, AdaBoost, CatBoost, LightGBM,
MLP, PNN, and a hybrid version of Logistic Regression and LightGBM models (referred to as the
Hybrid Model). Of the constructed models, Logistic Regression, Naı̈ve Bayes, MLP, PNN, and
Hybrid Model utilized dimension reduction techniques to address the multicollinearity assumption.

Depending on the ML classifier, we employed several feature-importance techniques in this
study: coefficients as feature importance (Logistic Regression and SVM), decision tree feature
importance (Decision Tree, Random Forest, Gradient Boost, XGBoost, CatBoost, and LightGBM),
and permutation feature importance (Naı̈ve Bayes, KNN, AdaBoost, MLP, and PNN).

Model evaluation

The two main model evaluation techniques incorporated in this study were the confusion matrix and
the Receiver Operating Characteristic (ROC) curve. Thus, accuracy, precision, recall (sensitivity),
specificity, and the F1 score were calculated for the confusion matrix, and the Area Under Curve
(AUC) was calculated for the ROC curve.

Finally, the decision boundaries (decision spaces) of each classifier were visualized in a two-
dimensional space.

Model deployment

We utilized a Python-based web application framework called Flask to make the model available for
end-users, enabling them to use it for practical decision-making.

Results

Characteristics of participants

We excluded 171 participants with missing data for self-reported or doctor-diagnosed asthma status
or lacking data to conclude asthmatic medication intake, leaving 6,494 (97.43%) participants for
analysis. Their mean age was 50.05 with a 95% Confidence Interval (CI) of (49.63–50.47), with
3,313 (51.02%) being female. A more detailed view of the characteristics of the asthma sample is
given in Table 2.

A significant number of individuals with asthma (∼71%) in the study displayed wheezing and
other respiratory symptoms. Asthmatics demonstrated lower physical activity levels, evidenced by a
lower mean MET_PA compared to non-asthmatics (4,892.62 vs 7,018.20). Demographic charac-
teristics, environmental exposures, and anthropometric measurements showed similarities between
asthmatics and non-asthmatics.

Model comparison

The evaluation indices of all fitted models are listed in Table 3. It highlights that many ML models,
those developed on imbalanced datasets (mentioned as algorithmic level approach models in
Table 3) outperformed those built on under-sampled datasets (mentioned as data-level approach
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Table 2. Characteristics of SLHAS asthma sample.

Variable All (N = 6,494) Asthmatics (N = 596)
Non-asthmatics (N =
5,898)

Respiratory symptoms
wheez, yes 799 (12.30%) 424 (71.14%) 375 (6.36%)
brthless_wheez, yes 606 (9.33%) 364 (61.07%) 242 (4.10%)
wheez_cold, yes 382 (5.88%) 255 (42.79%) 127 (2.15%)
awaken_chest_tightness, yes 435 (6.70%) 211 (35.40%) 224 (3.80%)
dyspnea_rest, yes 349 (5.37%) 185 (31.04%) 164 (2.78%)
dyspnea_strenuous_act, yes 902 (13.89%) 341 (57.21%) 561 (9.51%)
awaken_dyspnea_1yr, yes 419 (6.45%) 200 (33.56%) 219 (3.71%)
awaken_dyspnea_3month, yes 248 (3.82%) 136 (22.82%) 112 (1.90%)
avg_dyspnea_attk_1wk_3months,

yes
138 (2.13%) 93 (15.60%) 45 (0.76%)

avg_dyspnea_attk_3month 0.09 (0.05–0.13) 0.76 (0.38–1.14) 0.02 (0.01–0.03)
awaken_cough, yes 908 (13.98%) 280 (46.98%) 628 (10.65%)
nasal_allergy, yes 1,214 (18.69%) 272 (45.64%) 942 (15.97%)

Behavioural risk factors
smoker, yes 1,433 (22.07%) 132 (22.15%) 1,301 (22.06%)
passivesmoke, yes 1,617 (24.90%) 131 (21.98%) 1,486 (25.19%)
alcohol, yes 1,700 (26.18%) 110 (18.46%) 1,590 (26.96%)
MET_PA 6,827.57 (6,623.67–

7,031.47)
4,892.62 (4,424.27–
5,360.97)

7,018.20 (6,799.47–
7,236.93)

Household features
garbage
Polluting 3,001 (46.21%) 266 (44.63%) 2,735 (46.37%)
Non-polluting 3,405 (52.43%) 326 (54.70%) 3,079 (52.20%)

light
Polluting 58 (0.89%) 7 (1.17%) 51 (0.86%)
Non-polluting 6,346 (97.72%) 585 (98.15%) 5,761 (97.68%)

cookfuel
High-polluting 4,441 (68.39%) 385 (64.60%) 4,056 (68.77%)
Medium-polluting 70 (1.08%) 5 (0.84%) 65 (1.10%)
Low-polluting 1,887 (29.06%) 199 (33.39%) 1,688 (28.62%)
Non-polluting 5 (0.08%) 2 (0.34%) 3 (0.05%)

cookplace
Inhouse 5,802 (89.34%) 529 (88.76%) 5,273 (89.40%)
Separate building 527 (8.12%) 51 (8.56%) 476 (8.07%)
Outdoor 140 (2.16%) 15 (2.52%) 125 (2.12%)

Demographic details
ageyrs 50.05 (49.63–50.47) 53.95 (52.52–55.38) 49.66 (49.22–50.10)
sex, female 3,313 (51.02%) 348 (58.39%) 2,965 (50.27%)
ethnicity
Sinhala 4,569 (70.36%) 414 (69.46%) 4,155 (70.45%)
SL Tamil 1,268 (19.53%) 123 (20.64%) 1,145 (19.41%)
Muslim 413 (6.36%) 34 (5.70%) 379 (6.43%)

(continued)
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models in Table 3). The balanced LightGBM model and the balanced logistic regression model
returned the first and second-highest sensitivity of all individual models (excluding the Hybrid
model) (as denoted by the a symbol in Table 3).

This implies that balanced LightGBM and balanced Logistic Regression are the first and second-
best individual models for accurately identifying actual asthma patients (Table 3). This led us to
develop a model combining the balanced LightGBM and the balanced Logistic Regression, which
we called the Hybrid model. The Hybrid model recorded the highest value of sensitivity (recall) and
AUC of all the models we had constructed and was selected as the best model, excelling in terms of
sensitivity, AUC, and the number of features utilized (as elaborated in the section “Optimum
Features”).

Considering the number of models we experimented with, only those demonstrating high
evaluation scores are presented in the forthcoming sections.

Feature importance

Figure 2 illustrates the importance of individual features in a few selected models. In general, all ML
models indicate that input variables related to wheezing are noticeable in their ability to predict

Table 2. (continued)

Variable All (N = 6,494) Asthmatics (N = 596)
Non-asthmatics (N =
5,898)

Indian Tamil 200 (3.08%) 23 (3.86%) 177 (3.00%)
Other 43 (0.66%) 2 (0.34%) 41 (0.70%)

educat
No schooling 251 (3.87%) 39 (6.54%) 212 (3.59%)
Gr 1–5 908 (13.98%) 97 (16.28%) 811 (13.75%)
Gr 6-12 2,357 (36.30%) 203 (34.06%) 2,154 (36.52%)
Passed O-level 1,599 (24.62%) 142 (23.83%) 1,457 (24.70%)
Passed A-level 1,102 (16.97%) 85 (14.26%) 1,017 (17.24%)
Degree and above 265 (4.08%) 26 (4.36%) 239 (4.05%)

sector
Urban 1,971 (30.35%) 200 (33.56%) 1,771 (30.03%)
Rural 3,567 (54.93%) 314 (52.68%) 3,253 (55.15%)
Rural/Estate 791 (12.18%) 65 (10.91%) 726 (12.31%)
Estate 165 (2.54%) 17 (2.85%) 148 (2.51%)

rechhsize 2.97 (2.94–3.00) 3.00 (2.88–3.12) 2.97 (2.93–3.01)
hhincome 47,777 (45,254–

50,300)
39,223 (35,677–
42,769)

48,554 (45,810–
51,298)

Anthropometric measurements
weight 59.75 (59.43–60.07) 58.17 (57.17–59.17) 59.91 (59.58–60.24)
height 158.41 (158.18–

158.64)
156.32 (155.62–
157.02)

158.62 (158.38–
158.86)

waist 85.66 (85.36–85.96) 86.43 (85.42–87.44) 85.58 (85.27–85.89)
bmi 23.77 (23.66–23.88) 23.8 (23.41–24.19) 23.77 (23.65–23.89)
WHR 0.94 (0.94–0.94) 0.95 (0.94–0.96) 0.94 (0.94–0.94)
WHtR 0.54 (0.54–0.54) 0.55 (0.54–0.56) 0.54 (0.54–0.54)
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Figure 2. Feature importance of selected models: (a) balanced Logistic Regression model; (b) balanced
LightGBM model; (c) Hybrid model.

Table 3. Evaluation indices of fitted ML models.

Model Accuracy Precision Recall F1 score AUC

Data level approach
Logistic regression 93.53 71.95 52.88 59.39 0.8841
SVM 93.23 66.40 53.71 58.81 0.8945
Decision tree 92.15 55.39 76.36 63.99 0.8505
Random forest 93.07 67.25 46.14 54.16 0.8997
Naive bayes 89.53 46.82 69.02 55.17 0.8786
KNN 90.30 50.36 69.77 57.74 0.8954
Gradient boost 92.99 64.01 55.38 59.05 0.8988
XGBoost 93.07 66.08 50.53 56.95 0.9040
AdaBoost 93.23 64.31 59.70 61.62 0.8726
CatBoost 93.07 66.43 49.62 56.39 0.9028
LightGBM 92.61 64.59 46.29 53.51 0.9008
MLP 92.99 66.97 49.55 55.68 0.8665
PNN 84.91 31.89 54.62 39.91 0.7666

Algorithmic level approach
Logistic regression (balanced)a 90.38 48.37 77.35 59.42 0.8890
SVM (balanced) 92.15 55.39 76.36 63.99 0.8505
Decision tree (balanced) 92.15 55.39 76.36 63.99 0.8505
Random forest (balanced) 92.15 55.39 76.36 63.99 0.8505
Gradient boost (balanced) 93.46 67.19 56.21 60.76 0.9013
XGBoost (balanced) 91.99 54.75 76.36 63.60 0.8546
AdaBoost (balanced) 93.23 67.03 54.62 59.57 0.8979
CatBoost (balanced) 92.15 55.39 76.36 63.99 0.8505
LightGBM (balanced)a 91.76 53.99 78.11 63.62 0.9060
Hybrid modelb 90.15 48.76 79.85 60.32 0.9062

aSignifies individual models with high recall and AUC values.
bDenotes the model with the highest recall and AUC values among all models.
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asthma. In conjunction with wheezing, the occurrence of SOB episodes following strenuous ac-
tivity, and the presence of nasal allergies such as hay fever, emerge as factors related to having
asthma, as indicated by feature importance scores from models exhibiting high accuracy rates.
Notably, among behavioural characteristics, engaging in less physical activity appears to be as-
sociated with asthma.

Optimum features

By utilizing feature importance and cross-validated recall, the RFE algorithm provided the optimal
number of input features and identified which ones should be utilized. Figure 3 presents the number
of input features required to achieve the highest cross-validated recall in a set of selected models. We
considered the initial set of features that yield the highest cross-validated recall as the optimal
number for each MLmodel. Consequently, the balanced Logistic Regression model yielded the best
outcomes with the first 15 features, the balanced LightGBMmodel with the first 30 features, and the
hybrid model with the first 12 features. Thus, among the models showcasing the highest accuracy
levels, the Hybrid model stood out for requiring the fewest optimal features.

ROC curves

Figure 4 displays the ROC curves of the models, showcasing high AUC values. These curves
visually depict the sensitivity and specificity of the models. Points closer to the top-left corner of the
curve indicate better suitability and a closer approximation to the model’s ideal state. All three
models demonstrated AUC values near 0.90. However, the Hybrid model outperformed the others
by achieving the highest AUC while utilizing the least number of features.

Decision space

The decision space, depicted in Figure 5, visually illustrates how a set of fitted models delineate the
feature space into different classes, accompanied by the AUCmetric in the bottom right corner. Each
model’s prediction process and division of the feature space are showcased. The X and Y axes
represent input features, reduced to two dimensions through dimension reduction algorithms. Red
dots denote asthmatic patients, while blue dots denote non-asthmatic patients. The background
colours, shades of red for asthmatics and shades of blue for non-asthmatics, highlight the respective
feature spaces. The decision boundary, delineated by contour lines, marks regions where the
classifier assigns class labels based on input features. Notably, the Hybrid model and balanced

Figure 3. The optimum number of features in selected models: (a) balanced Logistic Regression model; (b)
balanced LightGBM model; (c) Hybrid model.
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Logistic Regression model demonstrate clear separations between asthmatic and non-asthmatic
classes, contrasting with the balanced LightGBM model, which lacks such a distinct separation.

Discussion

Discussion on fitted models

This study commenced by identifying the problem of accurate early diagnosis of asthma at af-
fordable costs. It was crucial to avoid misdiagnosis due to its potential consequences. Hence, it
became evident that a precise methodology was needed to predict asthma. As a resolution, a group
of ML and statistical classifiers, along with a web application, were developed for asthma
prediction.

In this paper, a total of 23 ML models were utilized to predict asthma among adults in Sri Lanka,
employing a representative database collected through digital means. Different sampling techniques
were employed to enhance the ML models’ performance. Thirteen models were tested on under-
sampled data, while ten were tested on imbalanced data. The study found that MLmodels trained on
imbalanced data with class weights performed better in predicting asthma compared to those trained
on under-sampled data. These classifiers include Logistic Regression, SVM, Decision Tree,
Random Forest, Naı̈ve Bayes, KNN, Gradient Boost, XGBoost, AdaBoost, CatBoost, LightGBM,
MLP, and PNN.

Figure 4. ROC curves of selected models: (a) balanced Logistic Regression model; (b) balanced LightGBM
model; (c) Hybrid model.

Figure 5. Decision space of selected models: (a) balanced Logistic Regression model; (b) balanced LightGBM
model; (c) Hybrid model.
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To determine the best model, two evaluation metrics were utilized: recall (sensitivity) and AUC.
Given the low prevalence of asthma, high accuracy alone is not sufficient since correctly identifying
individuals with asthma is crucial. Therefore, recall was prioritized as the primary measure to
evaluate all models. Subsequently, AUC was used to assess overall model performance. This
approach facilitated accounting for variations in dataset balance, including both balanced and
imbalanced datasets.

Following this evaluation approach, the balanced LightGBM model emerged as the top-
performing individual model, with a recall of 78.11% and an AUC of 0.9060. The second-best
individual model was the balanced Logistic Regression model, with a recall of 77.35% and an AUC
of 0.8890.

To further enhance model performance, a Hybrid approach was adopted. This involved using the
balanced Logistic Regression model to identify the most significant features, leveraging its in-
terpretability and effectiveness in feature selection. These selected features were then used to fit the
balanced LightGBM model, combining the strengths of both models. This Hybrid model approach
enabled leveraging the recall and AUC benefits of the LightGBMmodel while ensuring the best set
of features of the Logistic Regression model were used for prediction. This resulted in the highest
level of accuracy and reliability in identifying asthma cases.

This hybrid model utilized wheez, brthless_wheez, wheez_cold, awaken_chest_tightness,
dyspnea_strenuous_act, awaken_cough, nasal_allergy, passivesmoke, MET_PA, ethnicity, and
sector as input variables. These are six asthma symptom variables (wheeze, breathlessness with
wheeze, wheeze in the absence of a cold, awaking with chest tightness or cough, and shortness of
breath with strenuous activity), two risk factors (nasal allergies and passive smoking), two de-
mographic factors (ethnicity and sector of residence), and one behavioural factor (total physical
activity).

The Hybrid model reported an accuracy of 90.15%, indicating that the proportion of those
correctly categorized by the model is 90.15%. Since the Hybrid model recorded a 79.85% sen-
sitivity, it can correctly identify actual asthma patients with a probability of 79.85%. A specificity of
91.18% indicates that the model can accurately identify non-asthmatics with a probability of
91.18%. The AUC of 0.9062 of the model suggests that the likelihood of correctly distinguishing an
asthmatic from a non-asthmatic is 90.62%.

Model deployment

The ultimate solution integrated into this research is a Flask app where users can answer a specified
set of questions and obtain a prediction of having asthma. Once the app is launched, users can view
the front-end question set. As users provide answers to the questionnaire presented, their responses
are fed into the developed model as features to generate the prediction outcome. Figure 6 provides
the complete questionnaire.

After all fields in the questionnaire are successfully filled, the user clicks the “submit” button and
is shown the prediction result. The values inputted by the user are extracted and fetched to the hybrid
model, which is saved as a Pickle object, to perform calculations and provide the output. A positive
prediction is indicated by displaying the result in red, while a negative prediction is shown in green
(Figure 7). Additionally, for greater transparency, the AUC and predicted probability are presented
to the users with a brief description.
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Figure 6. Front-end questionnaire for data entry by users of the Flask app.
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Strengths

This research uses data from a nationally representative adult health survey, enabling a robust
analysis of various factors impacting asthma. By examining multiple variables such as respiratory
symptoms, behavioural risk factors, and demographic details, the study offers a comprehensive
understanding of the disease rather than focusing solely on isolated factors. This approach enhances
the local validity of the study results, facilitating informed decision-making.

The study differentiates itself by evaluating a large number of ML models (thirteen) on under-
sampled and imbalanced data to find the best predictor for asthma outcomes. A rigorous evaluation
was undertaken, utilizing a variety of ML and statistical models to enhance predictive accuracy.

Unlike previous studies that often relied on biochemical findings or lung function,16–18,20,69–72

this study prioritizes variables that do not require laboratory or lung function testing. This is
important for several reasons. Firstly, it broadens the use of ML-based apps to settings with limited
resources. Sri Lanka, like other low- and middle-income countries, has limited resources for testing.
The recent economic crisis in Sri Lanka has further strained the health system, leading senior
clinicians to advocate for greater reliance on “clinical judgment” and reduced dependence on
laboratory investigations.73 Our web application can supplement such clinical judgment as a low-
cost tool that relies on self-reported symptoms and background characteristics and potentially
triages patients for further investigation.

Secondly, by excluding spirometry data and anthropometric measurements in the final model, the
study enhances self-detection by individuals in the community. The application allows individuals
to actively participate in the prediction process by easily inputting their data and receiving per-
sonalized prediction outcomes. With an intuitive interface and easy-to-navigate forms, the ap-
plication encourages users to interact with the tool, promoting proactive asthma management.

Figure 7. Prediction outcome of the Flask app.
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With ever-increasing access to the internet and the ready availability of mobile phone devices,
such a web-based application is becoming increasingly accessible to the general public in Sri Lanka.
For instance, in 2022, 52.6% of Sri Lankans had internet access and there were 1.5 mobile
connections per person on average, indicating a high penetration of mobile devices.31 In low- and
middle-income countries, as many as 70% of the population were mobile users32 and 55% had
internet access in 2023.33 This trend demonstrates the rapid growth of connectivity and the potential
for digital health interventions in these regions. Furthermore, the individual-centric approach could
increase individual awareness, foster engagement, and facilitate health-seeking for asthma, par-
ticularly in the Sri Lankan setting, where the prevalence of asthma is likely to be high (estimated at
23%, which is far higher than in other South Asian countries), but diagnosis and treatment rates are
likely to be low, due to social stigmas associated with asthma and underdiagnosis by the healthcare
system.7

Sri Lanka boasts over 1,000 Healthy Lifestyle Centres (HLCs) that actively screen for diabetes,
hypertension, and cardiovascular disease,74 reaching approximately 0.5 million adults aged 35 and
over annually.75 These efforts align closely with the WHO Package of Essential Noncommunicable
(PEN) Disease Interventions for Primary Health Care,76 although Sri Lanka focuses predominantly
on cardiovascular disease, diabetes, and hypertension. While PEN includes guidelines for treating
asthma symptoms, and Sri Lanka has established asthma treatment protocols in primary care,77 there
is no national policy for widespread asthma screening, unlike the systematic screening for car-
diovascular disease, hypertension, and diabetes conducted at HLCs. Additionally, Sri Lanka
benefits from frequent doctor-patient interactions and a robust public health infrastructure.78 Public
health midwives routinely visit homes with newborns, and public health inspectors conduct various
community health initiatives. These existing settings and resources provide opportunities to dis-
seminate information about this app to the public. The app could be promoted at screening centers
for individuals to use independently, or even potentially be adapted into existing screening programs
at resource-limited primary or secondary facilities by healthcare staff.

Limitations of the study

Using secondary data presented certain limitations, primarily due to the unavailability of crucial
explanatory variables and a high rate of missing data on vital variables. Key parameters such as
outdoor air pollution, history of allergic diseases beyond nasal allergies and hay fever, family history
of allergic diseases, climate conditions, and exposure to pets were absent from the dataset. Ad-
ditionally, due to a significant proportion of missing values, variables related to occupational
exposures (∼53%) and family history of asthma (∼49%) had to be excluded.

Another limitation was the lack of data on children for inclusion in model development. The data
was from the SLHAS survey, which focused exclusively on the health and ageing aspects of adults,
and did not survey children.

The study encountered challenges related to the computational intensity and lengthy training
times required for ML models. Despite achieving high AUC values, prioritizing recall over pre-
cision resulted in many models not attaining high precision values. This trade-off between recall and
precision represents another limitation of the study.

Furthermore, the predictive model developed in the study has inherent limitations in predicting
the outcome of physician-diagnosed asthma. The outcome variable relied on self-reported asthma or
medical records/prescriptions related to asthma rather than a predetermined set of diagnostic criteria
by a clinician. In some cases, this reliance on participants’ recall of an asthma diagnosis or their
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medical records may have led to misclassification. Nonetheless, the model predicts the outcome
variable of physician-diagnosed asthma based on participants’ reports or medical records.

Suggestions for future work

In future iterations, enhancing the best-fitted model could involve incorporating variables that were
unavailable in the current study. Additionally, a variation could explore the integration of bio-
markers and clinical measurements into the model, specifically for clinical settings.

Another avenue for improvement lies in integrating wearable sensor data from devices such as
IoT devices or wearable sensors. This data could capture real-time physical activity levels, en-
vironmental exposures, and climate data, thereby enriching the model’s accuracy and predictive
capabilities.

It is recommended that this app be trialed in the community, with user feedback collected from
both clinical professionals and the general public on various parameters. Key aspects to evaluate
should include ease of use, likelihood of continued use, and user satisfaction. Additionally, it is
important to assess the app’s impact on health outcomes, specifically looking at parameters such as
an increase in new asthma diagnoses, improved adherence to medication, and overall management
of asthma symptoms. Collecting and analyzing this data will provide valuable insights into the app’s
effectiveness and areas for further improvement.

While this study explored many single-type ML algorithms, it primarily focused on one mixed
ML model, the Hybrid model. Future work could involve comparing this Hybrid model with other
mixed models to determine the most effective model in terms of prediction power.

To further enhance the user experience, steps can be taken to make the web application even more
user-friendly than its current interface. Additionally, exploring options such as web hosting and the
development of a mobile application could increase the accessibility and usability of the tool in
future iterations.

Conclusion

A combination of Logistic Regression and LightGBM classifiers (the Hybrid model) demonstrates a
90.62% accuracy rate in predicting asthma, as measured by AUC. The study identifies wheezing or
whistling sounds in the chest, breathlessness accompanied by wheezing, attacks of SOB, coughing
attacks, chest tightness, nasal allergies, physical activity level, exposure to passive smoking,
ethnicity, and sector of residence as the most significant factors associated with asthma. Addi-
tionally, the web application provides the opportunity to deploy the model for real-time predictions
at home or in clinical settings.

We anticipate that this study will prove valuable to healthcare providers, IT service providers in
healthcare, and patients within the Sri Lankan healthcare system. It may encourage possible
asthmatics to seek appropriate healthcare, as well as aid in the initial screening of individuals in
lower-level healthcare facilities, facilitating further specialist evaluation where necessary.
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